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Abstract 

 

Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step 

by step manufacturing procedure which includes initial mixing, molding and sintering is used.  The manufactured ceramic filters have 

numerous pores which help in water filtration. These filters fare well in microbial filtration but are plagued with alkalinity of filtrate during 

early use. Change in alkalinity between the water influent and effluent is defined by the difference in their corresponding pH. The 

development of alkalinity is a function of filtration time and the material property of the ceramic filtration devices discussed in this article. 

Macroscopic parameters such as degree of change in turbidity, electrical conductivity and temperature between the filter influent and effluent 

are the electro kinetic variables also used in the prediction of alkalinity. Flow rate through porous filtration devices influence alkalinity. The 

electro kinetic variables, flow and time are interdependent on each other. Multivariate stochastic regression technique is used to demonstrate 

the individual effect of these predictor variables. 
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INTRODUCTION 

 

Water transport through porous materials is a major area 

of study in various interdisciplinary applications namely 

ground water flow in soils and agriculture, cooling of water 

using clay ceramic water storage devices, drilling oil, food 

processing, filtration, nanotechnology and many more to list. 

Transport through porous structures has helped in filtration 

and purification of water. Clay based ceramic filters are used 

around the world by millions of people for water filtration 

(Plappally et al. 2009). These micro/nano-porous ceramic 

structures are basically made of clays (Plappally 2010). Water 

flow through ceramics will be affected by micro pore 

structural changes (Churaev 1990; Derjaguin et al. 1987). The 

compositional changes of the material surface due to 

dissolution also affect water flow (Churaev 1990; Derjaguin 

et al, 1987). Water flow through porous media may be 

modeled by continuum models, capillary bundle models, pore 

scale network models, and other numerical stochastic models 

(Philip 1986; Sochi 2009; Trussell et al. 1999). A model 

solution is still inexistent connecting flow with material as 

well as compositional aspects of the fluid varying with time.  

Flow through clay based porous materials occurs due to 

non equilibrium conditions between the material surface area 

and fluid volume (Bachmann et al. 2002; Marmur 1992). Non 

equilibrium conditions hint towards irreversible processes 

responsible for the increase in entropy (Onasager 1931). 

Entropy production rate in any system can be expressed in 

terms of mass or molar fluxes (Onasager 1931; Kjelstrup et 

al. 2001; Prigogine 1977). The experimental findings of 
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oxygen dissolution by Lantagne in 2001 and increase in 

alkalinity in filtrate during filtration by Halem in 2006 

represent examples of irreversible processes. There is a need 

to account for flow under concentration gradient ΔC, electric 

potential Δ E, temperature gradient Δ T and pressure gradient 

Δ P while dealing with porous flow through membranes 

(Sonune et al. 2004). 

 

Porous flow and temperature 
Flow of the liquid through the ceramic pores due to 

temperature difference is defined as thermo-osmosis (Churaev 

2000; Trussell et al, 1999). The solvent flux Sf  in mole per 

unit area per second will be given as  

 

                  (1) 

where a is the constant related to filtering capacity of the 

porous media, b1 is a constant related to flow due to 

temperature gradient   . Here           and   

     , where mv is the molar volume of the water 

(liquid),   is the pressure gradient across the thickness of the 

porous media,   is the viscosity of water (liquid) and k is 

filtration coefficient. Hence Eq. 1 can be written as, 

 

                   (2) 

The second term on the right hand side of Eq. 2 is equal 

to the mass flow rate through the porous media due to 

temperature difference on both sides of the porous media. 

Temperature difference of the influent water and effluent 

filtrate of the clay ceramic filters tested at Delft by Halem in 

2006 is shown in Fig 1. 

 

 
 
Figure 1 Temperature gradient with respect to discharge Q from the filters 
irrespective of the location of manufacture, Ghana, Cambodia and Nicaragua 

taken together (Halem 2006).  

 

The atmospheric temperature depends upon the climatic 

changes of that geographic location. Filter manufactured in 

moderate places may not behave as desired in temperate 

climates (Halem 2006).  

 

Influence due to change in concentration 
Solid-liquid separation is the major process for which the 

ceramic water filters are used. The degree of filtration plays a 

major part in defining transport influenced by concentration 

differences    (Churaev, 2000). Hence solvent flux, 

 

                 (3) 

where b2 defines the velocity of the capillary flow due to 

concentration gradient  , which is a measure of the electrical 

conductivity. The presence of dissolved ions may cause 

deviations from Darcy’s law in porous media due to capillary 

osmosis (Churaev 2000).  

The amount and mobility of ions determines 

conductivity. The ions such as Cl
-
, NO3

-
, SO4

2-
, PO4

3-
, Na

+
, 

Mg
2+

, Ca
2+

, and Fe
2+

/Fe
3+

 can be used to indicate impure 

water. The ionic strength greatly influences microbial activity 

(Paulsen et al, 1997; Morales et al, 2007). 

 

Electric conductivity of water 
Clay ceramics show electro-kinetic properties when in 

contact with water (Worrall 1986). Charge develops on clay 

ceramic surfaces in water basically due to diffusion. When 

water flows through any porous media it generates streaming 

current. This current is directly proportional to water 

conductivity (Paillat et al, 2001). This may also indicate the 

possible dissolution of reflux ions present in clay such as K, 

Na, Mg, Ca Al etc (Halem 2009). Specific conductance 

indirectly measures the presence of dissolved ions. 

 

 
Figure 2 The variation of specific conductance (    between influent and 

filtrate effluent as a function of temperature (Halem 2006). 
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Due to the weak chemical binding in the porous ceramics, 

the variation in specific conductance or electrical conductivity 

becomes pronounced with time (Philip 1986; Zhu et al, 2000). 

This process will increase the potential difference within the 

clay ceramic ware and atmosphere. 

This potential difference will induces a flux of solute 

through the porous media. For dilute solutions under 

negligible thermal influence this flux of solute     is, 

 

                 (4) 

where            defining the velocity of exchange 

of charge between molecules across the ceramic ware or 

porous media (Abramson et al, 2007). Considering the 

thermal influences in Eq. 4, the capillary pressure difference 

in clay ceramic porous media will be greatly influenced by 

temperature changes in the environment rather than just by 

the temperature of influent water (Bachmann et al, 2002).  

 

Turbidity   
The potential difference exerts a linear electro-osmotic 

pressure within the porous media (Srivastava et al., 1977). 

Electro-osmosis influences the exchange of materials within 

cellular organisms in water.  

The cellular organism in unfiltered water such as E.coli 

and other microbes (biological colloids) affect the velocity of 

exchange of charge between molecules (Bradford et al 2007; 

Churaev 2000; Kjelstrup et al, 2005). Turbidity 

(Nephelometric units or NTU) defines the degree of 

microbial, organic/inorganic chemical as well as colloidal 

contents of water (EPA 1997). 

The variation of turbidity between the PCCW filter 

influent and the effluent is shown in Fig. 3 for a time span of 

5 weeks.  

 

 
Figure 3 Turbidity variations with respect to time from the filters irrespective 
of the location of manufacture (Halem 2006). 

 

From Eq.1, Eq.3 and Eq.4, the solute flux can be written 

as, 

 

                           (5) 

The expression in Eq.5 satisfies the non equilibrium 

thermodynamic conditions proposed by Onasager (Srivastava 

et al, 1972). The solute flux variation is analogous to 

development of alkaline pH in the filtrate. 

A mechanistic or chemist’s view of porous flow in itself 

will not be able to capture a model solution for transport in 

clay based porous media.  Multi-predictor regression has 

been proposed to predict the leaching characteristics of the 

clay ceramics filter during filtration, thus proposing possible 

coupling of chemical dissolution and transport.  Based on the 

models developed here, the errors or variances have been 

examined and quantified. This probabilistic approach 

provides us the tools to quantify higher error rates and poor 

repeatability of experimental results in micro/nano porous 

fluid transport in clay ceramic filtration devices (Plappally 

2010).  

 

 

MATERIALS AND METHODS 

 

The filters were manufactured by combining specific 

volume ratio of materials namely, sawdust and clay. Sawdust 

was obtained from a local saw mill (Hamilton Supplies, 

Hamilton, NJ). Clay was procured from Resco Products Inc. 

Pittsburg, PA. Clay to sawdust mixes of 75:25, 65:35, 55:45, 

50: 50 and 55:45, ratio by volume were used in the 

manufacture of the PCCW filters used for the experiment. 

The step of manufacturing the PCCW filters has been 

explained clearly by the author in another article (Plappally et 

al. 2009).  

 
 

Figure 4 Manufactured frustum shaped clay ceramic filtration device  

 

Many researchers have done filtration tests focusing on 

the behavior of filtrate pH through similar filters (Halem 

2006; Swanton 2008; Lantagne 2001). It is necessary to 

understand this behavior due to material modifications and 
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surface interactions taking place during the transient flow 

through filter media.  

The sintered filters of each volume fraction were fully 

saturated with water by dipping them in a water bath 

containing purified water (Barnstead/Thermolyne, EASYpure 

uv/uf, Model D8611) for about 12 hours. This is done to 

simulate the actual discharge from the ceramic composite 

filter in a fully working condition.  

The experimental setup shown in Fig. 5 consists of three 

major components. First, a ceramic composite filter filled 

with water. Secondly, a vessel for collection of discharged 

filtrate from the filter.  

 

 
Figure 5 Model experimental setup for flow experiments conducted for 

different filter variants. 

 

Experimental setup was covered in a plastic wrap to 

prevent evaporation as well as external influences and 

impurities. Finally, the filtrate collection vessel sits on a load 

cell (Model LSC 7000-50, Omega Engineering Incorporated, 

Stamford, CT). 

The complete draining of pure water 

(Barnstead/Thermolyne, EASYpure uv/uf, Model D8611) 

under gravity from a fully filled composite ceramic filter is 

considered as one experiment. The filtrate pH is measured 

with a digital pH meter, Omega PHH224. The ph 

measurement was done at half hour duration after the start of 

the filtration process. The measurements were recorded for 

each of the 6 filters manufactured from different clay and 

sawdust configurations (75:25, 65:35 55:45, 50:50 and 55: 45 

by volume).   

The first objective is to establish the basic variables and 

their mutual interactions influencing the pH of the filtrate 

from the filters. The experiment focuses on the material 

constituents and time affecting the filtrate pH. 

 

Analysis of Experimental Data from Halem, 2006 

The compositional properties of influent water, 

temperature change and time are assumed to influence filtrate 

pH. The data used to  analyze this assumption  is referenced 

and cited from the MS Thesis of Doris Van Halem in 2006, at 

Delft University of Technology in November 2006 and can be 

retrieved from Potter for Peace website (PFP 2007).  

Each filter was made of locally available clay and 

sawdust (50: 50 by volume) respectively and manufactured in 

Ghana, Cambodia and Nicaragua. These filters were 

geometrically similar to the filters depicted in Fig 4. The pore 

sizes of these filters ranged from 0.001μm to 100μm 

(Plappally et al, 2009). 

A total of 6 PCCW filters each imported from Ghana 

(Type1), Cambodia(Type 2) and Nicaragua (Type 3) were 

loaded daily by Halem with 6 liters of water from canal Schie 

flowing through Delft city (Halem et al, 2007). Gravity driven 

flows emptied the compositionally uniform filters 

automatically. For 12 weeks the influent and filtrate were 

tested for temperature, turbidity, flow rate, pH and electrical 

conductivity. The procedure is elaborately explained in 

Halem et al, 2007 and Halem et al, 2009.  

Halem in 2006 elaborated the influence of dissolution of 

the chemical constituents of porous clay ceramic ware on the 

pH with flow occurring over a period of time. The figures 

Fig. 6, 7 and 8 represent the pH as a function of time. Only 5 

week data has been used for analysis. Filters were cleaned 

after 5 weeks which may disturb the flow process (Halem 

2007). The experimental results are plotted in Fig 1, Fig 2 and 

Fig 3.  

 

 
Figure 6 Filtrate pH in Type 1 filters from Ghana (Halem 2006; Plappally 

2010). 
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Table 1 The summary of constants a and c1, coefficient determination R2 and 
error S of the model illustrated in Eq 7. 

 

 
Figure 7 Filtrate pH in Type 2 filters from Cambodia (Halem 2006;Plappally 

2010). 

 

 

 
Figure 8 Filtrate pH in Type 3 filters from Nicaragua (Halem 2006; 

Plappally 2010). 

 

 

RESULTS AND DISCUSSION 

 

Material Influence 
Fig. 9 Illustrates the experimental results from the filters 

with clay to sawdust configurations 75:25, 65:35 55:45, 50:50 

and 55: 45 by volume respectively (Plappally 2010).  

The increase in pH of the filtrate, delta symbol pH = Y 

may be the result of dissolution of chemical ions from the 

filter material. The predictor variable    is transformed as 

shown in Eq.6 (Plappally et al, 2009; Tiller and Hsyung 1991; 

Sussman 1977). 

 
Figure 9: Variation of the pH in the filtrate with changes in volume fraction 

(Plappally 2010). 

 

Volume of sawdust (Xi for i=1) used to manufacture the 

clay ceramic is a minimal order statistical property 

(Ganapathysubramanium et al, 2007). This theoretical 

development of the transformation is expressed as, 

 

            
 
       for i = 1  (6) 

This can be written as follows 

 

            
 
       for i = 1  (7) 

where a, is a constant related to the ceramic material in 

contact with percolating pure water.  

The coefficient of the predictor variable (Xi for i= 1)  c1 

provides us information about the importance of the influence 

of the predictor variable X1 on the response Z1 in this case 

(Bulmer 1957).  

The  data as plotted in Fig. 9 may be modeled as shown 

in Table 1.  

With decrease in clay content (by volume) in the filter, 

there is decrease in compaction between the sawdust and clay. 

This may result in loose adhering of clay and sawdust which 

may result in enhanced dissolution of reflux ions in clay. This 

is clearly seen from the model in Table 1 and also from Fig 9.  

 

Modeling Time and Material influence on pH change 

 

From Fig. 6, Fig 7, Fig 8 and Fig 9, the pH change is 

found to increase with time of flow and it fits an increasing 

hyperbolic relationship with quantity of additive material 

constituent used to manufacture any individual filter. 

Therfore, change in pH (     may be assumed to follow the 

relationship. 
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(                  
 
      for k=1 (8) 

The data for Type 1, Type 2 and Type 3 filters were 

pooled separately and conformed for modeling. Each type had 

6 filters and filtrate pH data was collected for 5 weeks. This 

modeling approach would clearly analyze the behavior of 

filtrate pH influenced by different materials by which the 

Type 1, Type 2 and Type 3 filters were manufactured 

respectively.   

Table 2 represents the results of regression analysis. It 

also gives the coefficient of determination R
2
 and standard 

deviation of the model S. The R
2
 value development was 

found encouraging for all the three types tested. 

 
Table 2 The summary of constants a and c1, coefficient of determination R2 
and error S of the model illustrated in Eq 8 written as. 

  
           

 
         for i=1 

 

PCCWs Model A     R2 S 

Type 1 Z1” 0.00165 0.118 99.9 0.0026 

Type 2 Z2” 0.00206 0.118 99.9 0.0053 

Type 3 Z3” 0.00267 0.116 99.9 0.0016 

 

When considering multi-material constituents, the 

chemical behavior of the location specific clays has a great 

influence on the working of the filters (Kattamuri et al, 2005; 

Wilson et al, 1995).  

In order to study influence of materials specific to Type 

1, Type 2 and Type 3 respectively, Eq.8 is transformed to 

include material specific parameter M123 (Soboyejo et al, 

2001). The new model may be written as            
                    (9) 

where       , here a is derived from the Table 2 

(Soboyejo et al, 2001). Now the independent variables    and 

     are pooled for regression as per requirements for Eq. 9 

as shown above.  

 
Table 3: The summary of constants a and c1, coefficient of 

determination R2 and error S of the model illustrated in Eq 8 written as. 

  
           

 
         for i=2 

 

 A         R2 S 

Zi” 0.355 0.00119 -0.167 99.9 0.0038 

 

Fig. 10 plots points of the normally distributed Z1” value 

which confirms the goodness of prediction of the model 

represented in Eq. 9. From the Table 3, it is clear that 

coefficients c1 and c2 reflect the influences of the 

corresponding predictor variables. The values of model 

coefficients c1 and c2 confirm a higher influence of time than 

the material property parameter. The material parameter M123 

applies a negative effect on Zi”. 

 

0.0200.0150.0100.0050.000-0.005-0.010

99.9

99

95

90

80

70
60
50
40
30

20

10

5

1

0.1

Residual

P
e

rc
e

n
t

Normal Probability Plot

 
Figure 10 Normal probability plot of the transformed response variables Zi” 

(Minitab 15, 2009) 

 

Modeling Time, Thermal and Compositional Aspects 

of fluid on pH change 

The framework of non equilibrium thermodynamics as 

elaborated by Onasager is used here for predicting leaching in 

clay ceramics (Onasager 1931).  

Leaching can be confirmed from the increasing pH values 

of the filtrate with respect to the influent water pH. For this 

analysis, (     is represented as the response variable N. 

There is always a feasible environment for microbial 

(bio-colloids) bio-film growth on the water surface as well as 

on the surface of these porous ceramics (Klarman 2009; 

Petrasch 2008). The possible dissolution of exchangeable 

cations present in clay influence ionic transport. The other 

contributors for the changes in pH would be lignin and humic 

acid which may be formed in the process of filter saturation 

and filtration due to presence of sawdust. The change in 

turbidity plays an important role in quantifying the organic 

and inorganic material dissolution. Since turbidity defines 

colloidal nature of water, it is a major variable defining the 

colloidal statistics which follows characteristics of the 

problem explained by theory of probability after effects 

proposed by Smoluchowski (Chandrasekhar, 1943). L1, is the 

change in turbidity between the influent water and effluent 

filtrate. 

The change in the pH of the water to be filtered may 

change the hydraulic conductivity of the clay ceramic 

material and vice versa (Santiwong et al, 2008). The gravity 

driven water flow rate discussed in this technical article 

encompasses pressure variation occurring within the 

thickness of the porous ceramic material (Fausey et al, 1986). 

Flow rate Q is taken as second predictor variable L2 instead of 

pressure variation across the porous media.  

An increase in variation of pH is seen with increase in 

temperature difference in Fig.11. This trend is common for all 

the experiments performed on ceramic filtration devices 

around the world irrespective of shape and size (Plappally 

2010). 
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Figure 11 ΔpH is plotted as a function of temperature difference between the 

influent water and effluent filtrate measured in week 2 for Type 1 filters 
(Minitab 15, 2009).  

 

The temperature difference is the third variable L3 

considered. Presence of dissolved ions affects the flow rate of 

the filters. This flow rate Q variation with time influences 

electrical conductivity (Palliat 2001). Hence the fourth 

predictor variable L4 is the change in electrical conductivity 

between the influent and effluent filtrate from the clay 

ceramic filters. From Table 2, filtrate pH is found to increase 

with time. It is also seen the pH behaves as shown in Fig.8 

and elaborated by Eq. 6. The fifth predictor variable is time 

L5. These five parameters are strictly dependent on each 

other. 

 
Table 4 Correlation coefficient       

 between the predictor random variables 

L1, L2, L3, L4 and L5.  

 

The correlation matrix in Table 4 also confirms that the 

various transport processes occurring simultaneously during 

gravity based filtration process are dependent on each other 

with time. A negative correlation is evidence that large values 

of the predictor variables Li are associated with small values 

of the other counterpart predictor variables Li (Bulmer 1957). 

Table 4 also relates specific conductivity L4 negatively to 

turbidity L1 as confirmed by Kohlrausch (Goodwin 1899).  

From Table 4, the higher interdependence between L1 and 

other predictor variables L2, L3, L4 and L5 is visible. 

Therefore change in pH (N) is assumed to follow a 

transformation similar to Eq. 7 but with multi-parametric 

extension to include the predictors mentioned in Table 4.  

 

This extension is shown in Eq.10 below,  

  
  

                          
  (10) 

 

where N is the change in pH (ΔpH), L1 is the difference 

in turbidity of the influent and filtrate (NTU), L2 is the filtrate 

discharge rate (l/h), L3 temperature difference of the influent 

and the filtrate in K, L4 is the difference in electrical 

conductivity of the filtrate and the influent (S.10
-8

/m), L5 is 

the time in hours. The data from experiments performed on 

Type 1, Type 2 and Type 3 filters are pooled together to 

conform to the requirements of Eq. 10. Eq. 10 can be 

reformulated as below,  

 

            (11) 

Since the predictor random variables have different 

dimensions, Eq. 10 can be mathematically reformulated as  

 

      
             

        
    (12) 

where Lio and    
  is any reference constant with the same 

units as Li and Z’ respectively.   This will help in achieving 

dimensional similarity. 

Regression is to be carried out with independent 

variables.  Therefore the correlated predictor matrix column 

elements in Table 4 with correlation coefficient        
are 

linearly transformed as independent variables       and is 

scaled as (Haldhar et al, 2000; Krishnamoorthy 2006), 

 

             
  

      

          
             

      

    (13)  

The left hand side of Eq. 13, are standard normal variates 

of the predictor variables Li, j for i≠j and i=1, 2, 3 having zero 

mean and unit standard deviation. Here       
 and       

 are the 

parameters of normal distribution. The correlation coefficient 

of the standard normal variates is now             , where            = F 

parameter *      
(Kiureghian et al, 1985). The F-parameter for 

Eq. 13 in case of large (n=90) and normally distributed pH 

data is unity (Haldar et al, 2000).  

 
Table 5 Multivariate stochastic regression model constants for Eq.12, 

   
  

                          

 

 
Predictor 

Variables 
                   

   1.67 0.824 -0.318 -0.081 0.405 -0.73 97.9 

 

Predictor 

Variables 
               

   1 -0.139 0.471 0.874 -0.409 

   -0.139 1 -0.102 -0.223 -0.145 

   0.471 -0.102 1 0.421 0.257 

   0.874 -0.223 0.421 1 -0.421 

   -0.409 -0.145 0.257 -0.421 1 
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Table 5 provides a consolidated study irrespective of the 

manufacturing raw material or process or geo spatial property 

changes inherent in the clay ceramic filter. Table 5 tabulates 

the model constants m1, m2, m3, m4 and m5 which elaborate 

the individual influences of the predictor random variables, 

L1, L2, L3, L4 and L5.  

It is found that m2 is negative which indicates a negative 

effect of flow rate L2 on Z’. This confirms that diffusion 

changes with time. The difference in turbidity parameter, L1, 
has maximum impact on the pH value. A non parametric 

analysis of variance validation of the model is shown below  

          
           

           
         

   
            

           (14) 

 

1.992 ≈      1.8054   +      0.0113     +      0.0147       +

    0.0242        + 0.040 =1.8956  (15) 

 

From Eq. 14 and Eq. 15, turbidity plays an important role 

in defining the pH increase in the filtrate of a filter. 

A Kolmogorov Smirnov (K-S) test was performed at a 

99% level of confidence to test the validity of the assumed 

transformation and is shown in Table 6 below,  

 
Table 6 Dn and   

  for Kolmogorov Smirnov Test for the different models 
for N (Ang et al, 1975). 

 

From the results of the K-S test in Table 6 the proposed 

distribution of L1/N is acceptable at the specified significance 

level of 0.01.  This is true with long and continuous 

percolation of water through any specific clay based ceramic 

micro/nano porous material.   

 

 

CONCLUSION 

Novel phenomenological multivariate stochastic models 

have been proposed to predict leaching characteristics in filter 

manufactured locally in Ghana, Cambodia and Nicaragua. 

New models connecting flow with material as well as 

compositional aspects of fluid varying with time are 

proposed.  

Major results are summarized as follows, 

1. Filtrate pH is influenced by time of filtration process 

as well as the type of  material used in the 

manufacture of the filtration device.  

2. Parameters of change in turbidity, temperature, mass 

flow rate and electrical conductivity of fluids 

percolating any clay based porous media system are 

interdependent on each other with time.  

3. A novel  stochastic multi parameter model has been 

proposed for the prediction of filtrate alkalinity of 

the filters irrespective of material of manufacture 

and time.  

4. A novel hyperbolic relationship has been developed 

between change in pH and predictor variables 

including changes in turbidity, temperature, 

electrical conductivity, flow rate and time. 

This model is applicable to predict the multi-physics 

taking place in similar porous systems with micro/nano size 

pores distributed randomly throughout the material volume.  
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